葎草烯 | |
---|---|
IUPAC名 (1E,4E,8E)-2,6,6,9-Tetramethylcycloundeca-1,4-8-triene | |
别名 | 蛇麻烯、α-石竹烯 |
识别 | |
CAS号 | 6753-98-6 |
PubChem | 5281520 |
ChemSpider | 4444853 |
SMILES |
|
InChI |
|
InChIKey | FAMPSKZZVDUYOS-HRGUGZIWBF |
ChEBI | 5768 |
性质[1] | |
化学式 | C15H24 |
摩尔质量 | 204.35 g·mol−1 |
外观 | 淡黄绿色的透明液体 |
密度 | 0.886 g/cm3 |
熔点 | <25 °C(77 °F;298 K) |
沸点 | 106—107 °C(223—225 °F;379—380 K)(5 mmHg) |
危险性 | |
致死量或浓度: | |
LD50(中位剂量)
|
>48 mg/kg |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
α-葎草烯(英语:Humulene)[註 1],又名蛇麻烯或α-石竹烯,是天然存在的单环倍半萜,分子式C15H24,可看作三个异戊二烯单元构成,分子有三个非共轭双键。
葎草烯最早从啤酒花(葎草属,学名:Humulus)精油发现,因此得名[2]。葎草烯有个双环的同分异构体β-石竹烯,在很多有香气植物中,都能提取出兩者的混合物。
发现
葎草烯是蛇麻花精油成分之一,其浓度根据品种不同而变,最高可占精油40%[3]。酿啤酒过程中会产生多种葎草烯的环氧化物,根据GC-MS及气味分析研究,葎草烯环氧衍生物水解会散发出啤酒花香气[4][5]。
分布
葎草烯与β-石竹烯在各大洲的许多植物中都能找到,能釋放葎草烯的植物有松树[6]、橘园[7]、烟草 [8]和向日葵[9]。在芳香气氛的植物精油中也能找到葎草烯,如药用鼠尾草 [10]、乌药、人参属的三七、花旗参 [11]、留兰香(可占精油29.9 %)[12]、姜科植物[13]、雾社木姜子(一种中国月桂树)[14]、erva baleeira(马鞭草科一种灌木,位于南美洲沿海)的叶片提取物中可達4 %,另有25%反式石竹烯[15]是越南香菜和大麻属植物的香气成分[16]。
合成
葎草烯衍生自法尼基焦磷酸(FPP),FPP合成葎草烯过程由倍半萜合成酶催化[17],FPP脫焦磷酸基团後产生烯丙基阳离子[17]。
实验室合成葎草烯的方法有很多,如模拟生物合成从法尼醇合成葎草烯(Corey合成);闭合大环化合物不同位置的碳-碳键;钛催化羰基偶联反应(McMurry合成);烯丙基卤化物和受保护羟腈阴离子内烷基化(Takahashi合成)等[18]。有研究报道了更简单构建碳-碳键和环结构的方法,用四部份组装和钯介导环化两步合成[19]。
葎草烯上两个已取代双键更活潑,计算结果顯示有四种不同构象[20]。
应用
有研究报道植物精油的葎草烯有潜在抗炎作用[21][22]。2015年,巴西研究员用气相色谱法证明鼠尾草叶油的葎草烯可抑制埃及伊蚊繁殖[23][24]。
备注
- ^ 下文中如无说明,皆以葎草烯指代α-葎草烯。
参考文献
- ^ Merck Index, 12th Edition, 4789
- ^ Glenn Tinseth, "Hop Aroma and Flavor", January/February 1993, Brewing Techniques. <http://realbeer.com/hops/aroma.html (页面存档备份,存于互联网档案馆)> Accessed July 21, 2010
- ^ Katsiotis, S. T.; Langezaal, C. R.; Scheffe, J. J. C. Analysis of the Volatile Compounds from Cones of Ten Humulus lupulus Cultivars. Planta Med. 1989, 55 (7): 634. doi:10.1055/s-2006-962205.
- ^ Yange, Xiaogen; Lederer, Cindy; McDaniel, Mina; Deinzer, Max. Evaluation of hydrolysis products of humulene epoxides II and III. Journal of Agricultural and Food Chemistry. 1993, 41 (8): 1300–1304. doi:10.1021/jf00032a026.
- ^ Peackock, Val; Deinzer, Max. Chemistry of hop aroma in beer. Journal of the American Society of Brewing Chemists. 1981, 39. (原始内容存档于2013-12-30).
- ^ D. Helmig; J. Ortega; T. Duhl; D. Tanner; A. Guenther; P. Harley; C. Wiedinmyer; J. Milford; T. Sakulyanontvittaya. Sesquiterpene emissions from pine trees--identifications, emission rates and flux estimates for the contiguous United States. Environ. Sci. Technol. 2007, 41 (5): 1545–1553 [2022-07-11]. Bibcode:2007EnST...41.1545H. PMID 17396639. doi:10.1021/es0618907. (原始内容存档于2022-07-11).
- ^ P. Ciccioli; E. Brancaleoni; M. Frattoni; V. Di Palo; R. Valentini; G. Tirone; G. Seufert; N. Bertin; U. Hansen; O. Csiky; R. Lenz; M. Sharma. Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J. Geophys. Res. 1999, 104 (D7): 8077–8094. Bibcode:1999JGR...104.8077C. doi:10.1029/1998JD100026 .
- ^ C. De Moraes; M. Mescher; J. Tumlinson. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature. 2001, 410 (6828): 577–580. Bibcode:2001Natur.410..577D. PMID 11279494. S2CID 4408480. doi:10.1038/35069058.
- ^ G. Schuh; A. Heiden; T. Hoffmann; J. Kahl; P. Rockel; J. Rudolph; J. Wildt. Emissions of Volatile Organic Compounds from Sunflower and Beech: Dependence on Temperature and Light Intensity. J. Atmos. Chem. 1997, 27 (3): 291–318. Bibcode:1997JAtC...27..291S. S2CID 94314856. doi:10.1023/A:1005850710257.
- ^ Bouajaj, S; Benyamna, A; Bouamama, H; Romane, A; Falconieri, D; Piras, A; Marongiu, B. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat Prod Res. 2013, 27 (18): 1673–6. PMID 23240623. S2CID 29522122. doi:10.1080/14786419.2012.751600.
- ^ Cho, IH; Lee, HJ; Kim, YS. Differences in the volatile compositions of ginseng species (Panax sp.). J Agric Food Chem. Aug 2012, 60 (31): 7616–22. PMID 22804575. doi:10.1021/jf301835v.
- ^ Chauhan, SS; Prakash, O; Padalia, RC; Vivekanand, Pant AK; Mathela, CS. Chemical diversity in Mentha spicata: antioxidant and potato sprout inhibition activity of its essential oils. Nat Prod Commun. 2011, 6 (9): 1373–8. PMID 21941918.
- ^ Suthisut, D; Fields, PG; Chandrapatya, A. Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. J Econ Entomol. 2011, 104 (4): 1445–54. PMID 21882715. S2CID 45872520. doi:10.1603/ec11050.
- ^ Ho, CL; Wang, EI; Tseng, YH; Liao, PC; Lin, CN; Chou, JC; Su, YC. Composition and antimicrobial activity of the leaf and twig oils of Litsea mushaensis and L. linii from Taiwan. Nat Prod Commun. 2010, 5 (11): 1823–8. PMID 21213991.
- ^ de Carvalho, Jr.; Rodrigues, R.F.; Sawaya, A.C.; Marques, M.O.; Shimizu, M.T. Chemical composition and antimicrobial activity of the essential oil of Cordia verbenacea D.C. Journal of Ethnopharmacology. 2004, 95 (2–3): 297–301. PMID 15507352. doi:10.1016/j.jep.2004.07.028.
- ^ Hillig, Karl W. A chemotaxonomic analysis of terpenoid variation in Cannabis. Biochemical Systematics and Ecology. October 2004, 32 (10): 875–891. ISSN 0305-1978. doi:10.1016/j.bse.2004.04.004.
- ^ 17.0 17.1 Moss, G.P., "Humulene derived sesquiterpenoid biosynthesis." International Union of Biochemistry and Molecular Biology Enzyme Nomenclature. Accessed April 10, 2011. http://www.enzyme-database.org/reaction/terp/humul.html (页面存档备份,存于互联网档案馆)
- ^ Goldsmith, David. "The total synthesis of natural products". Canada: John Wiley & Sons. 1997 pp 129-133
- ^ Hu, Tao & Corey, E.J. Short Syntheses of (±)-δ-Araneosene and Humulene Utilizing a Combination of Four-Component Assembly and Palladium-Mediated Cyclization. Organic Letters. 2002, 4 (14): 2441–2443. PMID 12098267. doi:10.1021/ol026205p.
- ^ Neuenschwander, U; et al. Origin of Regioselectivity in α-Humulene Functionalization. J. Org. Chem. 2012, 77 (6): 2865–2869. PMID 22332847. doi:10.1021/jo3000942.
- ^ Passosa, G.F.; Fernandesa, ES.; et al. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. Journal of Ethnopharmacology. 2007, 110 (2): 323–333. PMID 17084568. doi:10.1016/j.jep.2006.09.032.
- ^ Fernandes E.S.; Passos G.F.; Medeiros R.; da Cunha F.M.; Ferreira J.; Campos M.M.; Pianowski L.F.; Calixto J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. European Journal of Pharmacology. 2007, 569 (3): 228–236. PMID 17559833. doi:10.1016/j.ejphar.2007.04.059.
- ^ Janelle Lassalle. Humulene. The Cannigma. 2020-09-19 [2021-01-27]. (原始内容存档于2022-07-11).
- ^ Santos da Silva, R.C.; Milet-Pinheiro, P.; Bezerra da Silva, P.C.; Gomes da Silva, A.; Vanusa da Silva, M.; Amaral Ferraz Navarro, D.M.; da Silva, N.H.; et al. Boudko, Dmitri , 编. (E)-Caryophyllene and α-Humulene: Aedes aegypti Oviposition Deterrents Elucidated by Gas Chromatography-Electrophysiological Assay of Commiphora leptophloeos Leaf Oil. PLOS ONE. 2015-12-19, 10 (12): e0144586. Bibcode:2015PLoSO..1044586D. PMC 4674132 . PMID 26650757. doi:10.1371/journal.pone.0144586 .