Lifestyle
Khazanah
Profil Baru
Dram Lists
Ensiklopedia
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics
S1 Information Systems
S1 Information Technology
S1 Computer Engineering
S1 Electrical Engineering
S1 Civil Engineering
faculty of Economics and Business
S1 Management
S1 Accountancy
Faculty of Letters and Educational Sciences
S1 English literature
S1 English language education
S1 Mathematics education
S1 Sports Education
Registerasi
Brosur UTI
Kip Scholarship Information
Performance
Weltenzyklopädie
非奇异方阵 - 维基百科,自由的百科全书
Search
非奇异方阵 - 维基百科,自由的百科全书
维基百科,自由的百科全书
(重定向自
可逆矩阵
)
线性代数
A
=
[
1
2
3
4
]
{\displaystyle \mathbf {A} ={\begin{bmatrix}1&2\\3&4\end{bmatrix}}}
向量
·
向量空间
·
基底
·
行列式
·
矩阵
向量
标量
·
向量
·
向量空间
·
向量投影
·
外积
(
向量积
·
七维向量积
) ·
内积
(
数量积
) ·
二重向量
矩阵与行列式
矩阵
·
行列式
·
线性方程组
·
秩
·
核
·
跡
·
單位矩陣
·
初等矩阵
·
方块矩阵
·
分块矩阵
·
三角矩阵
·
非奇异方阵
·
转置矩阵
·
逆矩阵
·
对角矩阵
·
可对角化矩阵
·
对称矩阵
·
反對稱矩陣
·
正交矩阵
·
幺正矩阵
·
埃尔米特矩阵
·
反埃尔米特矩阵
·
正规矩阵
·
伴随矩阵
·
余因子矩阵
·
共轭转置
·
正定矩阵
·
幂零矩阵
·
矩阵分解
(
LU分解
·
奇异值分解
·
QR分解
·
极分解
·
特征分解
) ·
子式和余子式
·
拉普拉斯展開
·
克罗内克积
线性空间与线性变换
线性空间
·
线性变换
·
线性子空间
·
线性生成空间
·
基
·
线性映射
·
线性投影
·
線性無關
·
线性组合
·
线性泛函
·
行空间与列空间
·
对偶空间
·
正交
·
特征向量
·
最小二乘法
·
格拉姆-施密特正交化
查
论
编
非奇异矩阵
(又称
可逆矩阵
或
正则矩阵
) 是一种存在逆元的
方块矩阵
。相反的,若方阵不存在逆元,则称为
奇异矩阵
。
相关定理
[
编辑
]
方阵
A
{\displaystyle A\,}
非奇异与以下论述等价:
A
{\displaystyle A\,}
是
可逆
的。
A
T
A
{\displaystyle A^{T}A\,}
是可逆的。
A
{\displaystyle A\,}
的
行列式
不为零。
A
{\displaystyle A\,}
的
秩
等於
n
{\displaystyle n\,}
(
A
{\displaystyle A\,}
满秩)。
A
{\displaystyle A\,}
的
轉置矩陣
A
T
{\displaystyle A^{T}\,}
也是可逆的。
A
{\displaystyle A\,}
代表的
线性变换
是个自
同构
。
存在一
n
{\displaystyle n\,}
階方陣
B
{\displaystyle B\,}
使得
A
B
=
I
n
{\displaystyle AB=I_{n}\,}
(
I
n
{\displaystyle I_{n}\,}
是
单位矩阵
)。
存在一
n
{\displaystyle n\,}
階方陣
B
{\displaystyle B\,}
使得
B
A
=
I
n
{\displaystyle BA=I_{n}\,}
(
I
n
{\displaystyle I_{n}\,}
是
单位矩阵
)。
A
{\displaystyle A\,}
的任意
特征值
非零。
参见
[
编辑
]
逆阵
正定矩阵
分类
:
矩陣
線性代數
14 bahasa
indonesia
Polski
العربية
Deutsch
English
Español
Français
Italiano
مصرى
Nederlands
日本語
Português
Sinugboanong Binisaya
Svenska
Українська
Tiếng Việt
Winaray
中文
Русский
Sunting pranala