礦物質(英語:Mineral),又稱為無機鹽、膳食礦物質,是生物體維持正常生理功能和生化代謝等生命活動所必需的化學元素[1][2][3],但通常不包括碳、氫、氮和氧等四大構成生物體的基礎元素(約佔人體體重的96%)。礦物質約佔人體體重的4.4%,可依生物體所需求的量分為巨量礦物質(需求量較大)和微量礦物質(需求較小)。人體內主要的礦物質包括鈣、磷、鉀、鈉和鎂等[2],其他具有特定生化功能的礦物質還有鐵、氯、鈷、銅、鋅、錳、鉬、碘、硒等。[4]
礦物質和維生素、必需脂肪酸以及必需胺基酸同為生物體必須的營養素。[5]由於礦物質是元素,不能由生物體以生物化學方式合成[6],因此須從環境中攝取。植物主要從土壤中獲取礦物質。[6]人類飲食中的大部分礦物質來自食用動植物及飲用水。[6]大多數礦物質在陸地上相當普遍,鈉和碘等也大量存在於海洋中。
適當攝取一定程度的膳食礦物質對維持身體健康是必須的,否則可能導致各種礦物質缺乏症。然而攝取過量亦可能引致許多病症,其中部分歸因於身體內不同礦物質的競爭性。例如過量的攝取鋅會抑制人體對銅和鐵的吸收。[7]
有媒體報導稱,物體接觸礦物質含量過高的井水後,會在物體表面形成薄膜,經長時間暴曬,薄膜會變成堅硬的外殼,即「石化」。[8]
生物圈
[编辑]並非每種化學元素在生物圈中都能發揮生物作用,只有在大多數生物(尤其是哺乳動物)體內具有生物功能的元素才會被視為膳食礦物質。大多數已受認定的膳食礦物質都是原子量相對較低的元素。
元素週期表中的礦物質[9] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | He | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fr | Ra | ** | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |
圖例:
四大生命基礎元素
可能在人體中具有不可或缺的潛在生理功能,但尚無決定性證據支持或其確切作用尚不明確的元素
有限的間接證據顯示其對哺乳動物身體有微量益處或生理功能的元素
|
功用
[编辑]人體
[编辑]除了CHON外,已知至少有16種化學元素在人體中具有明確生理功能[1][14],是人體必需的膳食礦物質。
巨量礦物質
[编辑]對於人類,維持生理所需的巨量礦物質(每日營養素建議攝取量,RDA > 200 mg/每日)包括:
礦物質 | 生理功能[15][16] | 膳食來源[16] | 缺乏及過量病症 |
---|---|---|---|
鉀 | 人體細胞內主要的陽離子,可調節細胞內外的滲透壓、水分及酸鹼平衡,維持肌肉收縮和神經傳導,參與細胞內醣類和蛋白質的代謝等 | 甘藷、番茄、胡蘿蔔、馬鈴薯、豆類、穀類、牛奶及乳製品、瘦肉、海鮮、香蕉、柳橙等[17][18] | 低血鉀 / 高鉀血症 |
氯 | 人體細胞外液主要的陰離子,可調節細胞內外的滲透壓、水分及酸鹼平衡,形成胃中的鹽酸,少數酶的輔因子等 | 食鹽、自來水 | 低氯血症 / 高氯血症 |
鈉 | 人體細胞外液主要的陽離子[19],可調節細胞內外的滲透壓、水分及酸鹼平衡[20],維持肌肉收縮和神經傳導等 | 食鹽、調味料(醬油、味精等)、加工肉類(火腿、香腸、午餐肉等)、海菜、牛奶、菠菜等 | 低血鈉症 / 高鈉血症 |
鈣 | 調節肌肉收縮、神經傳導和血液的凝固,構建骨骼及牙齒(羥基磷灰石),維持膠原蛋白之正常功能,參與血球的合成等 | 牛奶及乳製品、雞蛋、沙丁魚、深綠色蔬菜、堅果、芝麻、豆腐等[21] | 低鈣血症 / 高血鈣 |
磷 | 構成細胞膜(磷脂質),組成核苷酸(構成核酸、ATP負責化學分子的磷酸化以傳遞能量等),構建骨骼及牙齒(羥基磷灰石),維持血液的酸鹼平衡等 | 紅肉、牛奶及乳製品、魚、家禽、蛋、穀物、豆類等[22][23] | 低磷血症 / 高磷血症 |
鎂 | 催化ATP之合成及磷酸化,300多種酶展現活性所必需的輔因子,構建骨骼(磷酸鎂、碳酸鎂),協助肌肉收縮及神經傳導等 | 深綠色蔬菜、肉類、豆類、全穀類、堅果、花生醬、酪梨等[24] | 低血鎂症 / 高鎂血症 |
硫 | 構成多種胺基酸、輔因子和維生素,形成構建蛋白質的雙硫鍵,硫酸根參與肝臟解毒反應及維持血液酸鹼平衡等 | 肉類、家禽、蛋、豆類、堅果、蔥、蒜、洋蔥、十字花科蔬菜等 | -- |
微量礦物質
[编辑]最重要的微量礦物質(RDA < 200 mg/每日)包括:
礦物質 | 生理功能[15][16] | 膳食來源[16] | 缺乏及過量病症 |
---|---|---|---|
鐵 | 組成血紅素及肌紅素(負責氧和二氧化碳之運輸),組成多種酶及細胞色素等 | 肉類、海鮮、堅果、豆類、穀類、深綠色蔬菜、黑巧克力等[25] | 鐵缺乏症 / 血色沉著病 |
鋅 | 200多種酶展現活性所必需的輔因子,調節細胞的分裂、生長及凋亡,維持免疫系統運作正常,促進性器官的成熟及維持其功能運行,促進傷口癒合及骨骼發育等 | 紅肉、家禽、海鮮如牡蠣等、牛奶及乳製品、穀物、堅果等[26] | 鋅缺乏 / 鋅中毒 |
錳 | 超氧化物歧化酶等諸多酵素之成分或輔因子,維持醣類及脂肪之正常代謝,促進骨骼的發育及生長等 | 穀物、豆類、堅果、菠菜等葉菜類、茶葉、咖啡、動物內臟等[27] | 錳缺乏 / 錳中毒 |
銅 | 各種銅蛋白以及細胞色素c氧化酶等酵素之成分或輔因子 | 肝臟等內臟、肉類、牡蠣等海鮮、堅果、豆類、啤酒等[27] | 銅缺乏 / 銅中毒 |
碘 | 合成甲狀腺激素之必要成分,可調節人體新陳代謝、促進生長發育 | 海藻(海帶及紫菜等)、貝類等海鮮、蛋、乳製品、加碘鹽等[28] | 碘缺乏病(甲狀腺腫) / 碘中毒(甲狀腺功能亢進症[29]) |
鉬 | 黃嘌呤氧化酶、醛氧化酶和亞硫酸鹽氧化酶等酵素之輔因子[30] | 全穀類、豆類、堅果等[27] | 鉬缺乏 / 鉬中毒[31] |
硒 | 各種硒蛋白(如穀胱甘肽過氧化物酶、硫氧還蛋白還原酶等酵素)之成分或輔因子 | 海鮮、動物內臟、瘦肉、堅果、穀物、乳製品、蛋等[32] | 硒缺乏 / 硒中毒 |
鈷 | 維生素B12的關鍵成分 | 肉類、肝臟、海鮮如貝類、蟹肉等[33] | 鈷缺乏 / 鈷中毒 |
鉻 | 葡萄糖耐受因子(GTF)的組成部分(可促進胰島素作用,調節醣類及脂質的代謝),但目前其在體內的作用機制尚不明確,因此鉻對人體的重要性尚存疑義[34][35] | 肝臟、釀酒酵母、葡萄汁、胡椒、青花菜、全穀類製品等[36] | 鉻缺乏 / 鉻中毒 |
其他礦物質
[编辑]除了上述元素被普遍認可為人體必需的膳食礦物質外,很多其他元素也被建議列入人類必須的營養素,但這些元素的確切生理功能或對於人體之必要性大多缺乏決定性證據支持。[4]以下礦物質的認可與否根據不同的標準而有所差異。
元素 | 潛在生理功能 | 過量病症 |
---|---|---|
氟 | 氟不被認為是人體必需的化學元素,因為其在維持人體生命及生長發育過程中並不具有不可或缺的生理作用。儘管提高氟的攝取量能夠強化琺瑯質、降低齲齒率,維持骨質穩定、提高骨質密度。[16]氟化物對牙齒的主要益處在於其將牙齒表面的羥基磷灰石轉化為更耐酸的氟磷灰石,從而對細菌代謝產生的酸性物質具有更強的抵抗力。[37][38] | 氟化物中毒(氟骨症) 缺乏症:氟缺乏(齲齒、骨質疏鬆症) |
溴 | 為合成IV型膠原蛋白所必需的輔因子,可能對基底膜結構和組織發育有重要作用。[39] | 溴中毒 |
鎳 | 對部分植物、細菌、古菌和真菌具有重要生理功能,是多種酶的必要成分,例如脲酶和氫化酶等[40],因此鎳是人體腸道菌叢中部份菌種(如某些雙歧桿菌)之必要營養素。[41]在人體中,鎳可能是參與水解、氧化還原和基因表達的某些金屬酶之結構成分或輔因子。缺鎳會阻礙山羊、豬和綿羊的生長,並降低大鼠體內的循環甲狀腺激素濃度。[42] | 鎳中毒 |
硼 | 對植物來說屬於必需營養素,能夠維持細胞壁結構的完整及穩定性,參與細胞分裂,協助醣類的運輸等。[43][44][45]硼在動物體內是否具有確切的生理功能仍尚屬未知[46][47],目前有實驗發現補充硼可減少人體排尿時的鈣流失量,以及提升17β-雌二醇、睪固酮和維生素D在血中之濃度。[48][49] | 無急毒性(硼酸之LD50為每公斤體重2.5克) 長期暴露在高劑量硼中的慢性影響尚未研究透徹 |
鍶 | 對海生放射蟲等輻骨蟲綱非常重要,是其骨骼的主要成分(硫酸鍶)。[50]鍶在人體中會取代少量的鈣[51],適量的鍶能促進骨骼對鈣的吸收,輔助骨骼生長,且能提高骨骼密度。[52] | 某些類型的佝僂病[52] |
矽 | 矽藻、放射蟲和矽質海綿等生物使用二氧化矽建構其細胞壁或骨骼。[53]矽為一些植物(如水稻)之生長所需,能提高細胞壁結構的強度及完整性。在某些植物中,矽還能促進揮發性物質和植物激素的合成,在植物防禦機制中起著重要作用。[54][55][56]有些證據表明,矽對人體指甲、頭髮、皮膚、心血管和骨骼的健康十分重要[57],為合成彈性蛋白和膠原蛋白所需[58],亦可增加骨質密度[59],因此被認為是人體必需的營養素。[60] | -- |
釩 | 是部分海藻以及固氮菌體內某些酶的關鍵成分[61][62],也是被囊動物體內釩細胞(一種特殊血球)的主要成分。[63][64]目前尚未證實釩是人類必需的營養素,有研究發現缺乏釩會導致大鼠生長減慢。[65] | 釩中毒 |
鋰 | 根據血漿中的鋰濃度、生物活性和流行病學觀察,有跡象顯示鋰是人體必需的營養素,但目前尚無決定性證據。[66][67] | 鋰中毒 |
砷 | 被認為是鳥類必需的微量礦物質,參與其體內甲硫胺酸代謝物的合成。[68]但其在哺乳動物體內是否具有重要生理作用則尚不清楚。[69][70][71]一些研究表明砷為大鼠、倉鼠、山羊等動物所必需。[72] | 砷中毒 |
其他 | 其他被認為可能是人體必需營養素的元素包括鋁、鍺、鉛、銣和錫等。[40][73][74]另外,鎢、鎘和輕鑭系元素(鑭、鈰、鐠、釹等)在某些低等生物中具有特定的生理功能,但這些元素在哺乳動物體內目前尚無已知的生理作用。[75] | 各種金屬中毒症狀 |
除了上述元素外,人類的日常飲食中也含有其他各種各樣的元素,這些元素可能在人體中不發揮作用,但也幾乎完全無害(例如金、鋯、鈮、鉭等);也可能會干擾身體系統的正常運行,具有相當的毒性(例如汞、鉈、銻、鈹等)。
參見
[编辑]參考
[编辑]- Rebecca J. Donatelle. Health, The Basics. 6th ed. San Francisco: Pearson Education, Inc. 2005.
- ^ 1.0 1.1 Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J. Inorg. Biochem. June 2019, 195: 120–29. PMID 30939379. S2CID 92997696. doi:10.1016/j.jinorgbio.2019.03.013.
- ^ 2.0 2.1 Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David. Handbook of Nutrition and Food 3rd. CRC Press. 2013: 199 [3 July 2016]. ISBN 978-1-4665-0572-8.
- ^ Minerals. MedlinePlus, National Library of Medicine, US National Institutes of Health. 22 December 2016 [24 December 2016]. (原始内容存档于2018-09-11).
- ^ 4.0 4.1 Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David. Handbook of Nutrition and Food, Third Edition. CRC Press. 19 April 2016: 211–24 [3 July 2016]. ISBN 978-1-4665-0572-8.
- ^ Vitamin and mineral supplement fact sheets. Office of Dietary Supplements, US National Institutes of Health, Bethesda, MD. 2016 [19 December 2016]. (原始内容存档于2018-09-11).
- ^ 6.0 6.1 6.2 Minerals. Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. 2016 [2023-04-13]. (原始内容存档于2021-11-10).
- ^ Fosmire, G. J. Zinc toxicity. American Journal of Clinical Nutrition. 1990, 51 (2): 225–7. PMID 2407097. doi:10.1093/ajcn/51.2.225.
- ^ 英国现神秘水井:物品接触井水将被石化. 中國大陸: 參考消息. 2015-08-27 [2015-08-29]. (原始内容存档于2015-08-29) (中文(中国大陆)).
- ^ Ultratrace minerals. Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al. Baltimore: Williams & Wilkins, c1999., p. 283-303. Issue Date: 1999 URI: [1] (页面存档备份,存于互联网档案馆)
- ^ Micronutrients, Institute of Medicine (US) Panel on. Chromium. National Academies Press (US). 2001: 197–223 [2023-04-13]. (原始内容存档于2021-01-24) (英语).
- ^ Overview of Dietary Reference Intakes for Japanese (2015) (PDF). [2023-04-13]. (原始内容存档 (PDF)于2021-04-23).
- ^ Scientific Opinion on Dietary Reference Values for chromium. European Food Safety Authority. 18 September 2014 [20 March 2018]. (原始内容存档于2021-10-05).
- ^ Daumann, Lena J. Essential and Ubiquitous: The Emergence of Lanthanide Metallobiochemistry. Angewandte Chemie International Edition. 25 April 2019 [15 June 2019]. doi:10.1002/anie.201904090. (原始内容存档于2023-04-18).
- ^ Nelson, David L.; Michael M. Cox. Lehninger Principles of Biochemistry, Third Edition 3 Har/Com. W. H. Freeman. 15 February 2000: 1200. ISBN 1-57259-931-6.
- ^ 15.0 15.1 衞生署學生健康服務 - 礦物質. 香港特別行政區政府衛生署學生健康服務中心. [2023-04-19]. (原始内容存档于2023-06-05) (中文(香港)).
- ^ 16.0 16.1 16.2 16.3 16.4 謝明哲 胡淼琳 葉姝蘭 楊素卿 陳俊榮 張筱珮 徐成金 陳明汝 林娉婷 劉珍芳 張文心. 實用營養學. 臺灣: 華杏出版股份有限公司. 2019-02-10 [2023-04-19]. ISBN 9789861945149. (原始内容存档于2023-04-24) (中文(臺灣)).
- ^ Dietary Guidelines for Americans 2005: Appendix B-1. Food Sources of Potassium. United States Department of Agriculture. 2005 [2023-04-19]. (原始内容存档于2018-10-03).
- ^ WebMD 网医生. 含钾高的食物一览表,富含钾的蔬菜,富含钾的食物和水果. WebMD. 2019-01-16. (原始内容存档于2021-04-17).
- ^ Srilakshmi, B. Nutrition Science 2nd. New Age International. 2006: 318 [2021-07-17]. ISBN 978-81-224-1633-6. OCLC 173807260. (原始内容存档于2016-02-01).
- ^ Campbell, Neil. Biology. Benjamin/Cummings. 1987: 795. ISBN 978-0-8053-1840-1.
- ^ Drewnowski A. The Nutrient Rich Foods Index helps to identify healthy, affordable foods (PDF). Am J Clin Nutr. 2010,. 91(suppl) (4): 1095S–1101S [2023-04-19]. PMID 20181811. doi:10.3945/ajcn.2010.28450D . (原始内容存档 (PDF)于2020-05-27).
- ^ NHS Choices:Vitamins and minerals – Others. [8 November 2011]. (原始内容存档于2021-04-21).
- ^ Corbridge, DE. Phosphorus: An Outline of Its Chemistry, Biochemistry, and Technology 5th. Amsterdam: Elsevier Science Pub Co. 1 February 1995: 1220. ISBN 0-444-89307-5.
- ^ Magnesium—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2020-09-27).
- ^ Iron—Dietary Supplement Fact Sheet. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2021-05-04).
- ^ Zinc—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2020-09-07).
- ^ 27.0 27.1 27.2 Schlenker, Eleanor; Gilbert, Joyce Ann. Williams' Essentials of Nutrition and Diet Therapy. Elsevier Health Sciences. 28 August 2014: 162–3 [15 July 2016]. ISBN 978-0-323-29401-0.
- ^ Iodine—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2023-09-11).
- ^ Jameson, J. Larry; De Groot, Leslie J. Endocrinology: Adult and Pediatric. Elsevier Health Sciences. 25 February 2015: 1510 [14 July 2016]. ISBN 978-0-323-32195-2.
- ^ Sardesai VM. Molybdenum: an essential trace element. Nutr Clin Pract. December 1993, 8 (6): 277–81. PMID 8302261. doi:10.1177/0115426593008006277.
- ^ Momcilović, B. A case report of acute human molybdenum toxicity from a dietary molybdenum supplement—a new member of the "Lucor metallicum" family.. Archives of Industrial Hygiene and Toxicology (De Gruyter). September 1999, 50 (3): 289–97. PMID 10649845.
- ^ Selenium—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2020-05-27).
- ^ Vitamin B-12 (µg) (PDF). USDA National Nutrient Database for Standard Reference Release 28. 27 October 2015 [1 December 2022]. (原始内容存档 (PDF)于26 January 2017).
- ^ Kim, Myoung Jin; Anderson, John; Mallory, Caroline. Human Nutrition. Jones & Bartlett Publishers. 1 February 2014: 241 [10 July 2016]. ISBN 978-1-4496-4742-1.
- ^ Gropper, Sareen S.; Smith, Jack L. Advanced Nutrition and Human Metabolism. Cengage Learning. 1 June 2012: 527–8 [10 July 2016]. ISBN 978-1-133-10405-6.
- ^ Chromium. Office of Dietary Supplements, US National Institutes of Health. 2016 [10 July 2016]. (原始内容存档于2021-10-06).
- ^ Kakei M, Sakae T, Yoshikawa M. Aspects Regarding Fluoride Treatment for Reinforcement and Remineralization of Apatite Crystals. Journal of Hard Tissue Biology. 2012, 21 (3): 475–6 [1 June 2017]. doi:10.2485/jhtb.21.257 . (原始内容存档于2021-04-14).
- ^ Loskill P, Zeitz C, Grandthyll S, Thewes N, Müller F, Bischoff M, Herrmann M, Jacobs K. Reduced adhesion of oral bacteria on hydroxyapatite by fluoride treatment. Langmuir. May 2013, 29 (18): 5528–33. PMID 23556545. doi:10.1021/la4008558.
- ^ McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell. June 2014, 157 (6): 1380–92. PMC 4144415 . PMID 24906154. doi:10.1016/j.cell.2014.05.009.
- ^ 40.0 40.1 Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David. Handbook of Nutrition and Food, Third Edition. CRC Press. 19 April 2016: 211–26 [3 July 2016]. ISBN 978-1-4665-0572-8.
- ^ Sigel, Astrid; Sigel, Helmut; Sigel, Roland K. O. Interrelations between Essential Metal Ions and Human Diseases. Springer Science & Business Media. 27 January 2014: 349 [4 July 2016]. ISBN 978-94-007-7500-8.
- ^ Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. National Academies Press. 29 September 2006: 313–19, 415–22 [21 June 2016]. ISBN 978-0-309-15742-1.
- ^ Mahler, RL. Essential Plant Micronutrients. Boron in Idaho (PDF). University of Idaho. [5 May 2009]. (原始内容 (PDF)存档于1 October 2009).
- ^ Functions of Boron in Plant Nutrition (PDF). U.S. Borax Inc. (原始内容 (PDF)存档于20 March 2009).
- ^ Blevins DG, Lukaszewski KM. Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. June 1998, 49: 481–500. PMID 15012243. doi:10.1146/annurev.arplant.49.1.481.
- ^ Boron. PDRhealth. [2008-09-18]. (原始内容存档于11 October 2007).
- ^ Nielsen, Forrest H. Ultratrace elements in nutrition: Current knowledge and speculation. The Journal of Trace Elements in Experimental Medicine. 1998, 11 (2–3): 251–274. doi:10.1002/(SICI)1520-670X(1998)11:2/3<251::AID-JTRA15>3.0.CO;2-Q.
- ^ Nielsen, FH. Boron in human and animal nutrition. Plant and Soil. 1997, 193 (2): 199–208 [2023-04-21]. ISSN 0032-079X. S2CID 12163109. doi:10.1023/A:1004276311956. (原始内容存档于2021-04-19).
- ^ Nielsen FH, Hunt CD, Mullen LM, Hunt JR. Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J. 1987, 1 (5): 394–7. PMID 3678698. S2CID 93497977. doi:10.1096/fasebj.1.5.3678698.
- ^ De Deckker, Patrick. On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios. Hydrobiologia. 2004, 517 (1–3): 1. S2CID 42526332. doi:10.1023/B:HYDR.0000027333.02017.50.
- ^ Pors Nielsen, S. The biological role of strontium. Bone. 2004, 35 (3): 583–88. PMID 15336592. doi:10.1016/j.bone.2004.04.026.
- ^ 52.0 52.1 Pors Nielsen, S. The biological role of strontium. Bone. 2004, 35 (3): 583–588 [6 October 2010]. PMID 15336592. doi:10.1016/j.bone.2004.04.026. (原始内容存档于2023-04-25).
- ^ Bidle, Kay D.; Manganelli, Maura; Azam, Farooq. Regulation of Oceanic Silicon and Carbon Preservation by Temperature Control on Bacteria. Science. 2002-12-06, 298 (5600): 1980–1984 [2023-04-21]. Bibcode:2002Sci...298.1980B. ISSN 0036-8075. PMID 12471255. S2CID 216994. doi:10.1126/science.1076076. (原始内容存档于2023-04-04) (英语).
- ^ Kim, Sang Gyu; Kim, Ki Woo; Park, Eun Woo; Choi, Doil. Silicon-Induced Cell Wall Fortification of Rice Leaves: A Possible Cellular Mechanism of Enhanced Host Resistance to Blast. Phytopathology. 2002, 92 (10): 1095–103. PMID 18944220. doi:10.1094/PHYTO.2002.92.10.1095 .
- ^ Epstein, Emanuel. SILICON. Annual Review of Plant Physiology and Plant Molecular Biology. 1999, 50: 641–664. PMID 15012222. doi:10.1146/annurev.arplant.50.1.641.
- ^ Leroy, Nicolas; de Tombeur, Felix; Walgraffe, Yseult; Cornelis, Jean-Thomas; Verheggen, Francois. Silicon and plant natural defenses against insect pests: impact on plant volatile organic compounds and cascade effects on multitrophic interactions. Plants. 23 October 2019, 8 (444): 444. PMC 6918431 . PMID 31652861. doi:10.3390/plants8110444 .
- ^ Martin, Keith R. Chapter 14. Silicon: The Health Benefits of a Metalloid. Astrid Sigel; Helmut Sigel; Roland K.O. Sigel (编). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences 13. Springer. 2013: 451–473. ISBN 978-94-007-7499-5. PMID 24470100. doi:10.1007/978-94-007-7500-8_14.
- ^ Loeper, J.; Fragny, M. The Physiological Role of the Silicon and its AntiAtheromatous Action. 1978: 281–296. ISBN 978-1-4613-4020-1. doi:10.1007/978-1-4613-4018-8_13.
|journal=
被忽略 (帮助) - ^ Jugdaohsingh, R. Silicon and bone health. The Journal of Nutrition, Health and Aging. Mar–Apr 2007, 11 (2): 99–110. PMC 2658806 . PMID 17435952.
- ^ Nielsen, Forrest H. Ultratrace Elements in Nutrition. Annual Review of Nutrition. 1984, 4: 21–41. PMID 6087860. doi:10.1146/annurev.nu.04.070184.000321.
- ^ Butler, Alison; Carter-Franklin, Jayme N. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Natural Product Reports. 2004, 21 (1): 180–188. PMID 15039842. doi:10.1039/b302337k.
- ^ Robson, R. L.; Eady, R. R.; Richardson, T. H.; Miller, R. W.; Hawkins, M.; Postgate, J. R. The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature. 1986, 322 (6077): 388–390. Bibcode:1986Natur.322..388R. S2CID 4368841. doi:10.1038/322388a0.
- ^ Smith, M. J. Vanadium biochemistry: The unknown role of vanadium-containing cells in ascidians (sea squirts). Experientia. 1989, 45 (5): 452–7. PMID 2656286. S2CID 43534732. doi:10.1007/BF01952027.
- ^ MacAra, Ian G.; McLeod, G. C.; Kustin, Kenneth. Tunichromes and metal ion accumulation in tunicate blood cells. Comparative Biochemistry and Physiology B. 1979, 63 (3): 299–302. doi:10.1016/0305-0491(79)90252-9.
- ^ Schwarz, Klaus; Milne, David B. Growth Effects of Vanadium in the Rat. Science. 22 October 1971, 174 (4007): 426–428. Bibcode:1971Sci...174..426S. PMID 5112000. S2CID 24362265. doi:10.1126/science.174.4007.426.
- ^ Szklarska D, Rzymski P. Is Lithium a Micronutrient? From Biological Activity and Epidemiological Observation to Food Fortification. Biol Trace Elem Res. May 2019, 189 (1): 18–27. PMC 6443601 . PMID 30066063. doi:10.1007/s12011-018-1455-2.
- ^ Enderle J, Klink U, di Giuseppe R, Koch M, Seidel U, Weber K, Birringer M, Ratjen I, Rimbach G, Lieb W. Plasma Lithium Levels in a General Population: A Cross-Sectional Analysis of Metabolic and Dietary Correlates. Nutrients. August 2020, 12 (8): 2489. PMC 7468710 . PMID 32824874. doi:10.3390/nu12082489 .
- ^ Baloš, M. Živkov; Jakšić, S.; Pelić, D. Ljubojević. The role, importance and toxicity of arsenic in poultry nutrition. World's Poultry Science Journal. September 2019, 75 (3): 375–386 [2023-04-21]. ISSN 0043-9339. S2CID 202026506. doi:10.1017/S0043933919000394. (原始内容存档于2023-01-17) (英语).
- ^ Anke M. (1986) "Arsenic", pp. 347–372 in Mertz W. (ed.), Trace elements in human and Animal Nutrition, 5th ed. Orlando, FL: Academic Press
- ^ Uthus E.O. Evidency for arsenical essentiality. Environ Geochem Health. 1992, 14 (2): 55–58. PMID 24197927. S2CID 22882255. doi:10.1007/BF01783629.
- ^ Uthus E.O. (1994) "Arsenic essentiality and factors affecting its importance", pp. 199–208 in Chappell W.R, Abernathy C.O, Cothern C.R. (eds.) Arsenic Exposure and Health. Northwood, UK: Science and Technology Letters.
- ^ Anke M. Arsenic. In: Mertz W. ed., Trace elements in human and Animal Nutrition, 5th ed. Orlando, FL: Academic Press, 1986, 347–372; Uthus E.O., Evidency for arsenical essentiality, Environ. Geochem. Health, 1992, 14:54–56; Uthus E.O., Arsenic essentiality and factors affecting its importance. In: Chappell W.R, Abernathy C.O, Cothern C.R. eds., Arsenic Exposure and Health. Northwood, UK: Science and Technology Letters, 1994, 199–208.
- ^ Gottschlich, Michele M. The Science and Practice of Nutrition Support: A Case-based Core Curriculum. Kendall Hunt. 2001: 98 [9 July 2016]. ISBN 978-0-7872-7680-5.
- ^ Insel, Paul M.; Turner, R. Elaine; Ross, Don. Nutrition. Jones & Bartlett Learning. 2004: 499 [10 July 2016]. ISBN 978-0-7637-0765-1.
- ^ Ultratrace minerals. Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al.. Baltimore : Williams & Wilkins, c1999., p. 283-303. Issue Date: 1999 URI: [2] (页面存档备份,存于互联网档案馆)